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25 Abstract  

Steller  sea  lions  (Eumetopias  jubatus,  SSLs)  are  managed  as  two  distinct  population  

segments  within  U.S.  waters:  the  endangered  western  distinct  population  segment  and  the  

recently  delisted  eastern  distinct  population  segment.  Recent  studies  reported  concentrations  

of  mercury  in  several  tissues  collected  from  young  SSLs  in  the  Aleutian  Islands  that  were  at  or  

above  concentrations  found  to  negatively  impact  health  in  other  fish-eating  mammals.  

However,  there  are  limited  studies  which  have  investigated  the  range  of  mercury  

concentrations  that  may  negatively  influence  the  SSL  immune  system.  This  study  assessed  

relationships  between  methyl  mercury  (MeHg+)  concentrations  and  two  immune  functions,  

lymphocyte  proliferation  and  cytokine  expression.  Peripheral  blood  mononuclear  cells  

(PBMCs)  were  isolated  and  cryopreserved  from  pups  on  three  rookeries  within  the  western  

distinct  population  segment:  Chiswell  Island,  Ulak,  and  Agattu  Islands.  Lymphocyte  

proliferation  and  cytokine  expression  were  assessed  in  vitro  using  thawed  PBMCs  with  

exposure  to  MeHg+  (unexposed  control,  0.001,  0.01,  and  0.1  µg/ml).  Lymphocyte  proliferation  

was  measured  without  and  with  stimulation  with  a  T  cell  mitogen  (ConA)  and  B  cell  mitogen  

(LPS)  and  the  concentration  of  cytokines  was  measured  in  the  cell  culture  supernatant  (with  

and  without  ConA  or  LPS).  Spontaneous  lymphocyte  proliferation  was  significantly  increased  

at  0.01  and  0.1  µg/ml.  T  lymphocyte  proliferation  was  significantly  increased  at  0.001  µg/ml  

and  0.1  µg/ml,  while  B  lymphocyte  proliferation  was  decreased  at  0.1  µg/ml.  Cytokine  

concentrations  for  INFγ,  IL-10,  IL-6,  and  TNFα  were  reduced  at  0.1  µg/ml  upon  either  T  or  B  

cell  mitogen  stimulation,  with  the  exception  for  IL-10,  where  0.1  µg/ml  reduced  IL-10  

concentration  compared  to  unstimulated  cells.  These  data  suggest  immune  functions  were  

affected  by  MeHg+  exposure  requiring  in  vivo  follow  up  investigations.  The  observed  
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48 modulation  of  immune  functions  is  of  concern  as  any  toxicant-induced  modulation  may  

adversely  affect  the  health  of  individuals,  particularly  younger  animals  undergoing  periods  of  

critical  development.  

 

Keywords:  Steller  sea  lion;  Methyl  mercury;  Immune;  Lymphocyte  proliferation;  Cytokine  
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53 1.  Introduction  

Within  U.S.  waters,  Steller  sea  lions  (Eumetopias  jubatus,  SSLs)  are  managed  as  two  

distinct  population  segments,  with  the  western  distinct  population  segment  listed  as  

endangered  and  the  eastern  distinct  population  segment  listed  as  threatened,  until  its  delisting  

in  2013  (NMFS,  2013;  W.  Pitcher  et  al.,  2007).  Within  the  western  distinct  population  segment,  

variable  population  trajectories  have  been  found  across  the  geographic  range  with  some  

rookeries  continuing  to  decline  (Fritz  et  al.,  2014).  The  declining  or  depleted  portions  of  the  

western  distinct  population  segment  may  be  facing  numerous  biotic  or  abiotic  stressors  

including  toxicant  exposure,  altered  prey  availability,  fisheries  competition,  killer  whale  

predation,  and  disease.  The  population  declines  and  slow  recoveries  of  the  western  distinct  

population  segment  of  SSLs  have  been  the  focus  of  continuing  research  and  debate,  with  

environmental  toxicants  including  organochlorine  compounds  (OCs)  and  mercury  being  

hypothesized  as  contributing  factors  (Atkinson  et  al.,  2008;  Barron  et  al.,  2003;  Beckmen  et  al.,  

2002;  Holmes  et  al.,  2008).  Recent  studies  have  reported  relatively  high  concentrations  of  

mercury  in  tissues  (hair  and  blood)  sampled  from  SSL  pups,  lending  support  to  the  hypothesis  

that  mercury  may  be  impacting  the  recovery  of  SSLs  in  some  areas  within  the  western  distinct  

population  segment  (Castellini  et  al.,  2012;  Kennedy  et  al.,  2019;  Rea  et  al.,  2013).  

Mercury  is  a  widespread  element  in  the  environment  and  has  both  natural  (e.g.  volcanic  

activity,  geological  deposits)  and  anthropogenic  (e.g.  incineration  of  coal,  gold  mining)  sources  

(Pacyna  et  al.,  2006).  Like  other  contaminants,  mercury  biomagnifies  and  bioaccumulates  in  

upper  trophic  animals  and  has  been  shown  to  have  deleterious  effects  on  the  nervous,  

immune,  and  endocrine  systems  (Basu  et  al.,  2006;  Tan  et  al.,  2009;  Wolfe  et  al.,  1998).  

Across  the  range  of  SSLs,  total  mercury  concentrations  in  hair  and  pups  less  than  three  

months  of  age  had  high  concentrations  suggesting  exposure  and  accumulation  of  mercury  in  

utero.  Further,  total  mercury  levels  in  hair  grown  in  utero  (a  proxy  for  maternal  exposure)  were  
4  
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78 significantly  elevated  in  pups  whose  mothers  fed  on  higher  trophic  prey,  as  determined  by  

analysis  of  stable  nitrogen,  δ15N  (Rea  et  al.,  2013),  suggesting  that  diet  is  a  significant  source  

of  mercury  in  SSLs.  These  findings  suggest  that  adult  females  and  their  pups  are  potentially  at  

risk  for  deleterious  effects  of  mercury  that  may  include  disruption  of  the  immune  system.  

Mercury  exposure  for  very  young  pinnipeds  is  through  transplacental  and  

transmammary  transfer  (Jones  et  al.,  1976;  Wagemann  et  al.,  1988).  In  the  western  distinct  

population  segment,  several  SSL  pups  had  hair  and  blood  mercury  concentrations  

approaching  or  exceeding  concentrations  found  to  negatively  impact  fish-eating  mammals  

(Basu  et  al.,  2007;  Castellini  et  al.,  2012;  Rea  et  al.,  2013;  Riget  et  al.,  2011;  Wren  et  al.,  

1988).  Among  SSL  pups  from  the  western  distinct  population  segment,  whole  blood  total  

mercury  concentrations  ≥0.11  mg/kg  were  correlated  with   lower  concentrations  of  haptoglobin,  

an  acute  phase  protein  (Kennedy  et  al.,  2019).  In  marine  mammals,  a  high  percentage  of  

mercury  in  the  blood  is  in  the  methylated  form  (Das  et  al.,  2008),  which  may  interact  with  blood  

immune  cells  and  modulate  their  function.  Monomethyl  mercury  (MeHg+)  was  shown  to  

modulate  two  immune  functions,  lymphocyte  proliferation  and  cytokine  expression,  in  free-

ranging  and  captive  harbor  seals  (Das  et  al.,  2008;  Kakuschke  et  al.,  2008).  However,  it  is  

unclear  what  mercury  concentrations  affect  the  health  of  SSLs  and  only  a  few  studies  to  date  

have  undertaken  the  task  of  assessing  the  relationships  between  mercury  exposure  and  

immune  functions  in  SSLs  (Kennedy  et  al.,  2019).   

Lymphocytes  are  responsible  for  the  acquired  or  adaptive  immune  response  in  

vertebrates.  T  lymphocytes  are  primarily  responsible  for  mounting  a  cell-mediated  immune  

response,  while  B  lymphocytes  are  primarily  responsible  for  mounting  a  humoral  immune  

response,  both  which  require  the  expansion  of  naïve  or  memory  cells  through  the  process  of  

lymphocyte  proliferation  (Owen  et  al.,  2013).  Lymphocyte  proliferation  is  the  first  step  in  a  

proper  immune  response  to  create  effector  lymphocytes,  which  are  necessary  to  eliminate  a  
5  

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

103 current  antigen,  or  memory  lymphocytes,  which  help  eliminate  the  same  antigen  the  host  may  

encounter  in  the  future,  responding  with  a  more  rapid  and  enhanced  response  compared  to  the  

first  encounter.  SSL  pups  with  a  developing  immune  system  may  be  susceptible  to  the  effects  

of  toxicants,  such  as  MeHg+,  on  critical  T  and  B  lymphocyte  immune  functions.  SSL  pups  

respond  to  in  vitro  stimulation,  with  T  cells  responding  to  an  antigenic  challenge  as  early  as  

five  days  following  birth  (Keogh  et  al.,  2010).  However,  SSL  pups  exhibited  a  decrease  in  T  

cell  proliferation  with  age  during  the  early  postnatal  period  (Keogh  et  al.,  2010).  Toxicant-

induced  immunomodulation  may  increase  an  individual’s  susceptibility  to  infectious  pathogens,  

leading  to  increased  morbidity  and  mortality  (Ross  et  al.,  1996;  Van  Loveren  et  al.,  2000).  

Cytokines  are  small  cell-signaling  proteins,  which  are  produced  and  released  by  cells  of  

the  immune  system  in  response  to  a  stimulus  (pathogen  or  tissue  damage).  Pro-inflammatory  

cytokines,  secreted  in  the  beginning  of  an  inflammatory  response,  include  interleukin  (IL)-1,  IL-

6,  IL-8  and  tumor  necrosis  factor  alpha  (TNFα).  Anti-inflammatory  cytokines,  secreted  to  

dampen  an  inflammatory  response,  include  IL-4,  IL-10,  and  IL-13.  Cytokines  are  also  used  to  

define  the  direction  of  an  immune  response  orchestrated  by  T  helper  (Th)  cells.  Th1  cells  

secrete  interferon  gamma  (IFNγ),  IL-2,  IL-12  and  TNFα,  which  promote  cell-mediated  immunity  

to  help  combat  intracellular  pathogens,  whereas  Th2  cells  secrete  IL-4,  IL-10,  and  IL-5,  which  

promote  humoral  immune  responses  to  help  combat  extracellular  pathogens  (Owen  et  al.,  

2013).  

Several  papers  suggest  that  the  toxicant-induced  immunomodulation  is  likely  to  result  in  

adverse  health  outcomes,  such  as  disease  susceptibility  in  marine  mammals.  For  example,  in  

a  series  of  papers  assessing  the  relationship  between  toxicant  exposure  and  changes  in  

immune  functions  and  host  disease  resistance,  a  good  correlation  was  found  between  

changes  in  the  immune  tests  and  altered  host  resistance  in  that  there  were  no  instances  where  
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127 host  resistance  was  altered  without  affecting  an  immune  test(s)  (Luster  et  al.,  1994;  Luster  et  

al.,  1993;  Luster  et  al.,  1992).  Using  a  semi-field  study  in  which  captive  harbor  seals  were  fed  

herring  from  the  contaminated  Baltic  sea,  or  from  the  less  contaminated  Atlantic  Ocean,  those  

seals  fed  the  contaminated  (with  polychlorinated  biphenyls)  herring  had  impairments  to  several  

immune  functions  (e.g.  natural  killer  cell  activity,  T  lymphocyte  proliferation,  delayed  typed  

hypersensitivity),  suggesting  that  the  contaminated  herring  were  immunotoxic  (Ross  et  al.,  

1996).  The  authors  suggested  that  the  impaired  immune  functions  could  results  in  diminished  

host  resistance  and  an  increased  incidence  and  severity  of  infectious  disease.  In  a  recent  

review  of  the  immunotoxic  effects  of  contaminants  and  toxicants,  including  mercury,  in  marine  

mammals,  the  authors  concluded  that  exposure  to  immunotoxic  contaminants  may  have  

significant  population  level  consequences  as  a  contributing  factor  to  increasing  anthropogenic  

stress  in  marine  wildlife  and  infectious  disease  outbreaks  (Desforges  et  al.,  2016).   

The  goal  of  this  study  was  to  assess  the  effects  of  in  vitro  exposure  to  increasing  

concentrations  of  MeHg+  on  lymphocyte  proliferation  and  cytokine  expression.  These  data  will  

contribute  to  understanding  the  role  of  toxicants  in  SSL  recovery  within  the  western  distinct  

population  segment  population.  

 

2.  Methods  and  Materials  

2.1.  Blood  samples  

 We  sampled  28  SSL  pups  (15  female,  13  male)  at  three  rookeries  within  the  western  

distinct  population  segment.  Sampling  occurred  on  June  30,  2016  on  the  northern  shore  of  

Chiswell  Island  (59°35’13”  N,  149°34’50”  W)  in  the  northern  Gulf  of  Alaska,  June  27,  2017  at  

Gillon  Point  on  Agattu  Island  (54°24’26”  N,  173°21’46”  W),  and  on  June  30,  2017  at  Hasgox  

Point,  Ulak  Island  (51°18’39”  N,  178°59’12”  W).  While  under  isoflurane  anesthesia  (Heath  et  
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151 al.,  1997;  Merrick  et  al.,  1996),  blood  samples  were  collected  using  standard  aseptic  

techniques  via  the  caudal  gluteal  plexus  (20  G  1.5  inch  needle)  directly  into  sodium  heparin  

blood  tubes.  Blood  samples  were  centrifuged  and  buffy  coats  were  cryogenically  preserved  

(fetal  calf  serum  with  10%  DMSO)  and  stored  at  -150°C  or  colder  until  further  analysis,  as  

previously  described  (Keogh  et  al.,  2010).  

  

2.2.  Peripheral  blood  mononuclear  cell  (PBMC)  preparation  

Cryopreserved  buffy  coats  were  quickly  thawed  in  a  37°C  water  bath  and  added  to  a  

conical  tube  containing  10  times  the  volume  of  warm  Hank’s  Balanced  Salt  Solution  (HBSS;  

Life  Technologies,  Grand  Island,  NY)  and  centrifuged  at  300g  for  10  min.  The  pellet  was  re-

suspended  in  20  ml  HBSS  and  centrifuged  at  300g  for  10  min.  The  pellet  was  re-suspended  in  

10  ml  HBSS  and  passed  through  sterile  nylon  wool  to  remove  any  clumps  or  cellular  debris.  

The  cell  solution  was  centrifuged  at  300g  for  10  min  and  re-suspended  into  Dulbecco’s  

modified  Eagle’s  medium  (DMEM;  Life  Technologies,  Grand  Island,  NY)  supplemented  with  

1mM  sodium  pyruvate,  100  mM  non-essential  amino  acids,  25mM  HEPES,  2mM  L-glutamine,  

100  U/mL  penicillin,  100  mg/mL  streptomycin  and  0.25  mg/mL  Fungizone  (all  obtained  from  

Life  Technologies,  Grand  Island,  NY,  USA),  along  with  10%  fetal  bovine  serum  (Hyclone,  

Logan,  UT,  USA),  hereafter  referred  to  as  complete  DMEM.  The  PBMCs  were  counted  with  a  

hemocytometer  using  the  trypan  blue  exclusion  dye  to  measure  cell  viability.  Cell  viability  was  

typically  >90%.  

PBMC  isolation  was  confirmed  using  BD  FACScan  flow  cytometry  (Becton  Dickinson,  

Rutherford,  NJ).  CellQuest  software  (Becton  Dickinson  Immunocytometry  System,  San  Jose,  

CA)  was  used  to  identify  PBMCs  (lymphocytes  and  monocytes)  based  on  their  cell  morphology  

using  cell  size  (forward  scatter)  and  granularity  (side  scatter)  (Figure  1),  as  performed  with  

other  pinnipeds  (Bogomolni  et  al.,  2016a;  Bogomolni  et  al.,  2016b).  
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2.3.  Mitogen-induced  lymphocyte  proliferation  

Preliminary  data  showed  that  in  vitro  exposure  of  PBMCs  to  0.5  and  1  µg/ml  MeHg+  

caused  direct  cell  mortality  as  measured  using  propidium  iodide  and  flow  cytometry  (data  not  

shown).  Therefore,  0.1  µg/ml  was  chosen  as  the  highest  concentration  tested,  which  did  not  

cause  direct  cell  toxicity.  MeHgCl  (Sigma-Aldrich,  St  Louis,  MO)  concentrations  were  prepared  

in  complete  DMEM  at  0  (unexposed  control),  0.001,  0.01,  and  0.1  µg/ml.  Importantly,  this  

range  included  whole  blood  MeHg+  concentrations  within  the  ranges  measured  in  Chiswell  

SSL  pup  whole  blood  (range:  0.028  to  0.066  µg/ml;  Rea,  Castellini,  Keogh  et  al.,  unpublished  

results),  Pacific  harbor  seal  pups  (Van  Hoomissen  et  al.,  2015),  bottlenose  dolphins  (Reif  et  

al.,  2015),  and  humans  (Jung  et  al.,  2013).  

T  and  B  cell  mitogen-induced  proliferation  was  evaluated  as  described  previously  (Levin  

et  al.,  2005;  Levin  et  al.,  2009;  Mori  et  al.,  2008;  Mori  et  al.,  2006).  Briefly,  2  x  105  PBMCs/well  

in  complete  DMEM  were  plated,  in  triplicate,  in  96-well  flat-bottom  tissue-culture  plates  

(Falcon,  Becton  Dickinson,  NJ).  Cells  were  incubated  at  37°C  with  5%  CO2  for  a  total  of  66  

hours  with  concanavalin  A  (ConA  1  µg/ml;  Millipore  Sigma,  St.  Louis,  MO),  lipopolysaccharide  

(LPS  O111:B4,  5.0  µg/ml;  Millipore  Sigma,  St.  Louis,  MO)  or  complete  DMEM  (no  mitogen),  as  

well  as  MeHg+  as  selected  above.  Both  ConA  and  LPS  mitogens  have  been  shown  to  

stimulate  marine  mammal  lymphocytes,  including  in  SSLs  (de  Swart  et  al.,  1993;  Keogh  et  al.,  

2010;  Mori  et  al.,  2008;  Mori  et  al.,  2006).  Lymphocyte  proliferation,  as  measured  by  the  

incorporation  of  5-bromo-2′-deoxyuridine  (BrdU),  a  thymidine  analogue,  during  the  last  18  

hours  of  incubation  and  was  detected  by  enzyme-linked  immunosorbent  assay  (ELISA;  Cell  

Proliferation  ELISA  BrdU,  Roche  Diagnostics,  USA)  using  a  plate  reader  (Multiskan  EX  v.1.0)  

at  450  nm  with  a  reference  wavelength  of  690  nm.  
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201 2.4.  Cytokine  concentrations  

 PBMCs  were  cultured  for  the  collection  of  supernatants  to  measure  secreted  cytokines,  

as  previously  described  (Levin  et  al.,  2014).  Briefly,  2  x  105  PBMCs/well  (from  n=5  individuals)  

in  complete  DMEM  were  plated,  in  duplicate,  in  96-well  flat-bottom  tissue-culture  plates  

(Falcon,  Becton  Dickinson,  NJ).  Cells  were  incubated  at  37°C  with  5%  CO2  for  a  total  of  48  

hours  with  ConA  (1  µg/ml),  LPS  (5.0  µg/ml)  or  complete  DMEM  (no  mitogen),  as  well  as  the  

selected  concentrations  of  MeHg+  listed  above.  After  48  hours,  plates  were  centrifuged  for  10  

min  at  220g  and  the  cell  culture  supernatant  was  collected  and  pooled  from  duplicate  well.  

Samples  were  immediately  frozen  and  stored  at  -80°C  until  analysis.   

Cell  culture  supernatant  cytokines  were  quantified  (pg/ml)  using  the  commercially  

available  Millipore  Canine  Cytokine/Chemokine  Magnetic  Bead  Panel  (Millipore  Sigma,  St.  

Louis,  MO  and  the  Bio-Plex®  100/200™  System  at  the  University  of  Connecticut.  The  cytokine  

panel  was  previously  validated  to  measure  cytokines  in  several  pinniped  species  (Levin  et  al.  

2014).  Samples  were  prepared  and  analyzed  according  to  the  manufacturer’s  instruction  with  

quality  control  measures.  All  quality  control  values  were  within  the  manufacturer’s  specified  

concentration  ranges  for  each  run.   

 

2.5.  Statistics  

The  effect  of  in  vitro  exposure  on  each  response  variable  (e.g.  proliferation  or  cytokine  

concentration)  was  assessed  using  linear  mixed  effects  models  (LME).  Exposure  

concentration  was  set  as  the  fixed  effect  and  sea  lion  ID  was  set  as  the  random-effect  in  order  

to  account  for  the  natural  variation  in  individual  responses.  The  unexposed  control  (complete  

DMEM  alone)  was  set  as  the  reference  concentration  and  was  used  to  compare  all  other  

treatments.  Concentration−response  relationships  were  described  with  log−logistic  models.  All  

statistical  and  graphical  analyses  were  carried  out  using  R  version  3.5.3  (R  Development  Core  
10  
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226 Team,  2019)  with  the  nlme  and  DRC  packages  and  the  graphical  package  ggplot2  (Pinheiro  et  

al.,  2017;  Ritz  et  al.,  2015;  Wickham,  2016).  The  null  hypothesis  was  rejected  at  α  =  0.05.   

 

3.  Results  

3.1.  Lymphocyte  flow  cytometric  profile  

 A  representative  scatterplot  and  density  plot  of  the  flow  cytometric  profile  of  SSL  

PBMCs  is  shown  in  Figure  1  and  confirmed  that  thawed  buffy  coats  contained  viable  PBMCs.  

PBMCs  were  easily  distinguished  based  on  relative  cell  size  (forward  scatter)  and  granularity  

(side  scatter),  as  previously  observed  for  pinnipeds  (Bogomolni  et  al.,  2016a;  Bogomolni  et  al.,  

2016b).  

 

3.2.  Mitogen-induced  lymphocyte  proliferation  

The  effects  of  MeHg+  on  lymphocyte  proliferation  are  illustrated  in  Figure  2.  Without  

mitogen,  spontaneous  lymphocyte  proliferation  was  significantly  increased  at  0.01  µg/ml  

(112%  of  control;  p=0.0004)  and  0.1  µg/ml  (112%  of  control;  p=0.0004)  MeHg+ .  ConA-induced  

lymphocyte  proliferation  was  significantly  increased  at  0.001  µg/ml  (107%  of  control;  p=0.0119)  

and  0.01  µg/ml  (111%  of  control;  p<0.0001)  MeHg+ .  LPS  induced  lymphocyte  proliferation  was  

decreased  at  0.1  µg/ml  (76%  of  control;  p<0.0018)  MeHg+.  

 

3.3.  Cell  culture  supernatant  cytokine  concentrations  

 Cytokine  expression  in  the  presence  of  MeHg+  is  illustrated  in  Figure  3.  Of  the  13  

cytokines  measured  using  the  canine  cytokine  kit,  concentrations  were  above  the  minimum  

detection  limits  (Table  1)  for  six  cytokines,  including  IFNγ,  IL-6,  IL-10,  TNFα,  IP-10,  and  KC-

like.  All  other  cytokines  were  below  the  minimum  detection  limit  and  were  not  further  analyzed.  
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250 For  IFNγ,  0.1  µg/ml  MeHg+  reduced  ConA-induced  expression  (69%  of  control;  p=0.0021).  For  

IL-10,  0.1  µg/ml  MeHg+,  reduced  both  unstimulated  expression  (60%  of  control;  p=0.039)  and  

LPS-induced  expression  (58%  of  control;  p=0.0024).  For  IL-6,  0.1  µg/ml  MeHg+  reduced  both  

ConA-induced  expression  (56%  of  control;  p=0.0015)  and  LPS-induced  expression  (78%  of  

control;  p=0.0009).  For  TNFα,  0.01  µg/ml  MeHg+  reduced  LPS-induced  expression  (92%  of  

control;  p=0.0136),  while  0.1  µg/ml  MeHg+  reduced  both  ConA-induced  expression  (50%  of  

control;  p=0.0001)  and  LPS-induced  expression  (84%  of  control;  p=0.0001).  No  significant  

changes  in  cytokine  expression  were  detected  for  IP-10  and  KC-like  (data  not  shown).   

 

4.  Discussion  

 This  study  describes  the  effects  of  in  vitro  MeHg+  exposure  on  lymphocyte  proliferation  

and  cytokine  expression  for  SSL  pups  in  Alaska  (United  States).  For  both  measures  of  immune  

function,  the  highest  MeHg+  concentration  tested,  0.1  µg/ml,  significantly  reduced  either  

mitogen-induced  lymphocyte  proliferation  or  cytokine  expression.  However,  only  modest  

changes  were  detected  for  lymphocyte  proliferation  (no  more  than  +/- 15%  of  control),  while  

changes  in  cytokine  expression  were  more  marked,  with  reductions  of  up  to  50%  in  some  

cases.  

 

4.1  Lymphocyte  proliferation  

In  previous  studies  using  harbor  seal  and  human  PBMCs  (Das  et  al.,  2008),  the  

reduction  in  mitogen-induced  lymphocyte  proliferation  occurred  at  ~1.1  µg/ml  MeHg+,  which  

was  approximately  ten  times  higher  than  the  highest  concentration  used  in  the  current  study,  

0.1  µg/ml,  resulting  in  a  greater  than  75%  reduction  in  proliferation.  However,  in  the  same  

previous  study,  the  concentrations  that  caused  a  decrease  in  lymphocyte  proliferation  also  
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274 induced  a  significant  increase  in  cell  mortality,  which  could  suggest  that  direct  cytotoxicity  

contributed  to  the  decrease  in  proliferation  the  authors  observed  in  that  study.  Preliminary  data  

from  this  study  showed  that  1  µg/ml  MeHg+  resulted  in  a  marked  decrease  in  PBMC  viability,  

therefore,  0.1  µg/ml  was  chosen  as  the  highest  concentration  tested  in  this  current  study.  In  a  

different  study  using  captive  harbor  seals,  in  vitro  exposure  of  blood  lymphocytes  to  MeHg+  

between  0.125  to  0.5  µg/ml  (0.6  and  2.3  µM)  resulted  mostly  in  a  decrease  in  lymphocyte  

proliferation,  although  with  a  different  T  cell  mitogen,  pokeweed  mitogen  (PWM;  2  µg/ml)  

(Kakuschke  et  al.,  2008).   

The  MeHg+  concentration  that  resulted  in  a  50%  decrease  in  ConA-induced  lymphocyte  

proliferation  (inhibitory  concentration,  IC50)  was  reported  as  0.17  and  0.12  µg/ml  for  harbor  and  

greys  seals,  respectively  (Desforges  et  al.,  2016),  much  higher  than  IC50  values  reported  for  

beluga  whales  and  bottlenose  dolphins,  both  at  0.039  µg/ml  (Desforges  et  al.,  2016).  In  the  

present  study,  no  concentration  reduced  proliferation  by  more  than  50%,  hence,  the  IC50  is  

presumably  above  0.1  µg/ml  MeHg+.  These  data  suggest  that  the  threshold  for  

immunosuppressive  effects  may  be  higher  in  SSL  pups,  compared  to  some  species  of  

cetaceans  and  pinnipeds,  at  least  for  effects  on  lymphocyte  proliferation.  Mechanisms  involved  

in  the  detoxifying  of  mercury  in  these  species,  including  the  role  of  selenium,  may  account  for  

observed  differences  in  IC50  values  and  should  be  further  explored.  Although  statistically  

significant  changes  were  observed  in  lymphocyte  proliferation,  the  magnitude  of  change  was  

no  more  than  15%  above  or  below  unexposed  control  cells.  It  is  unclear  at  this  time  if  these  

changes  would  translate  into  biological  significant  health  consequences  in  exposed  animals.   

  

4.2  Cytokine  expression  

To  the  authors’  knowledge,  this  is  the  first  study  to  measure  cytokine  expression,  at  the  

protein  level,  from  the  cell  culture  supernatant  of  SSL  PBMCs  following  in  vitro  exposure  to  
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299 MeHg+.  Notably,  measurable  increases  in  cytokine  concentrations  were  detected  when  SSL  

PBMCs  were  stimulated  with  the  ConA  and/or  LPS  mitogens,  compared  to  unstimulated  

PBMCs  without  in  vitro  MeHg+.   exposure.  These  same  cytokines  were  also  shown  to  increase  

their  concentrations  when  PBMCs  were  stimulated  with  ConA  and/or  LPS  in  other  pinniped  

species,  including  harbor  seals,  grey  seals,  harp  seals,  and  Weddell  seals  (Bagchi  et  al.,  2018;  

Levin  et  al.,  2014),  further  demonstrating  the  likely  cross-reactivity  of  the  canine  cytokine  kit  for  

pinniped  species.  

 IFNγ  is  an  important  T  helper  1  (Th1)  and  pro-inflammatory  cytokine,  which  activates  

macrophages  to  help  combat  intracellular  pathogens  such  as  viruses,  and  0.1  µg/ml  MeHg+  

reduced  its  concentration  from  ConA-induced  PBMCs  by  about  30%.  The  decrease  in  IFNγ  did  

not  correlate  with  a  significant  change  in  T  lymphocyte  proliferation  at  the  same  MeHg+  

concentration.  Interestingly,  at  the  two  lower  concentrations  tested,  an  increase  in  T  

lymphocyte  proliferation  did  not  necessarily  translate  into  an  increase  in  this  Th1  cytokine.  

A  second  pro-inflammatory  cytokine,  IL-6,  is  an  important  mediator  of  fever  and  of  the  

acute  phase  response  and  is  secreted  by  both  T  and  B  lymphocytes.  MeHg+  at  0.1  µg/ml  

reduced  its  concentration  from  both  T  and  B  stimulated  lymphocytes,  56%  and  78%,  

respectively.  The  decrease  in  IL-6  did  not  correlate  with  a  significant  change  in  T  lymphocyte  

proliferation  at  the  same  concentration  (and  did  not  increase  at  concentrations  that  increased  T  

cell  proliferation),  but  the  decrease  in  IL-6  did  follow  a  decrease  in  B  lymphocyte  proliferation  

(0.1  µg/ml).  Whether  the  latter  is  correlative  or  causal  warrants  further  investigation.  

A  third  pro-inflammatory  cytokine,  TNFα,  is  involved  in  systemic  inflammation  and  the  

acute  phase  response  and  can  be  secreted  by  CD4  lymphocytes,  as  well  as  macrophages.  

MeHg+  at  0.1  µg/ml  notably  reduced  its  concentration  from  T  stimulated  lymphocytes  by  50%,  

while  both  0.01  and  0.1  µg/ml  MeHg+  reduce  its  expression  in  B  stimulated  lymphocytes,  but  
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323 by  only  up  to  15%.  Again,  as  for  IFNγ  and  IL-6,  a  decrease  in  TNFα  did  not  correlate  with  a  

significant  change  in  T  lymphocyte  proliferation  (and  did  not  increase  at  concentrations  that  

increased  T  cell  proliferation).  Similar  to  IL-6,  a  decrease  in  TNFα  did  follow  a  decrease  in  B  

lymphocyte  proliferation  at  the  same  MeHg+  concentration  (0.1  µg/ml).  

IL-10  can  help  down-regulate  a  Th1  immune  response  as  well  as  enhance  B  cell  

survival,  proliferation,  and  antibody  production,  and  0.1  µg/ml  MeHg+  reduced  its  expression  in  

LPS-stimulated  PBMCs,  as  well  as  unstimulated  PBMCs.  Notably,  0.1  µg/ml  MeHg+  also  

reduced  B  lymphocyte  proliferation,  and  whether  this  relationship  is  correlative  or  causal  

warrants  further  investigation.  It  is  interesting  to  speculate  whether  a  failure  to  down-regulate  a  

Th1  response  was  responsible  for  the  increase  in  T  lymphocyte  proliferation,  however,  this  is  

difficult  to  confirm  solely  from  in  vitro  experiments,  but  is  worth  further  investigation.  

Taken  together,  significant  and  distinct  reductions  in  cytokine  concentrations  were  

detected,  especially  those  involved  in  pro-inflammatory  cytokines,  which  may  increase  the  risk  

for  pathogen  infection  and/or  disease  susceptibility  in  this  species  as  previously  documented  

(Burek  et  al.,  2005).  In  addition,  the  magnitude  of  change  for  cytokine  secretion  was  more  

pronounced  in  T  stimulated  lymphocytes  than  B  stimulated  lymphocytes,  however,  the  

decrease  in  cytokines  in  B  stimulated  lymphocytes  followed  a  decrease  in  B  stimulated  

lymphocyte  proliferation  and  these  relationships  warrant  further  study.  As  with  lymphocyte  

proliferation,  it  is  unclear  at  this  time  if  these  changes  in  cytokine  concentrations  would  

translate  into  adverse  health  consequences  in  exposed  animals.  

In  one  other  report  that  assessed  the  impact  of  MeHg+  on  cytokine  expression  in  

pinnipeds  (at  the  mRNA  level)  the  expression  of  cytokines  IL-2,  IL-4  and  TGF-β  was  

investigated  in  harbor  seal  (Phoca  vitulina)  lymphocytes  by  real  time  quantitative  PCR  (n=5)  at  

concentrations  of  ~0.05  and  0.25  µg/ml  (Das  et  al.,  2008).  IL-2  and  TGF-β  appeared  highly  

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

345 

346 

15 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

347 sensitive  to  in  vitro  MeHg  exposure  in  regard  to  their  dramatic  decreases  in  gene  expression  at  

0.2  and  1  µM,  compared  to  control.  However,  IL-4  showed  an  increasing  trend  from  control  to  

1  µM.  From  both  the  current  and  previous  study,  cytokines  appear  to  be  sensitive  to  the  effects  

of  MeHg+  upon  in  vitro  exposure,  resulting  in  mostly  a  decrease  in  their  expression  at  both  the  

molecular  and  protein  levels.  

It  is  important  to  note  that  the  above  in  vitro  experiments  where  conducted  with  PBMCs  

isolated  from  whole  blood,  and  in  vitro  studies  assessing  the  impact  of  MeHg+  on  lymphocyte  

proliferation  covered  a  range  of  Hg  concentrations,  including  physiologically  relevant  

concentrations  as  reported  in  whole  blood.  However,  Hg  compartmentalization  studies  in  

bottlenose  dolphin  (Tursiops  truncatus)  whole  blood  have  reported  95%  of  total  mercury  

associated  with  the  packed  cells  (primarily  erythrocytes),  while  only  5%  was  in  plasma  (Correa  

et  al.,  2013).  Similarly,  Aberg  et  al.  (1969)  reported  10  fold  higher  MeHg+  concentrations  in  

erythrocytes  compared  to  serum  after  oral  administration  in  humans.  Thus,  

compartmentalization  of  MeHg+  in  whole  blood  may  impact  the  exposure  level  of  lymphocytes  

in  vivo,  potentially  reducing  its  immunotoxic  effects.  Furthermore,  additional  work  should  

investigate  the  partitioning  of  THg  and  MeHg+  among  the  white  blood  cells.  

 

5.  Conclusions  

 For  the  four  cytokines  above,  a  distinct  decrease  in  cytokine  expression  corresponded  

with  a  modest  reduction  in  T  and  B  lymphocyte  proliferation  at  the  highest  MeHg+  

concentration  tested.  At  this  point,  it  is  unclear  if  there  is  a  causal  relationship  between  

decreases  in  lymphocyte  proliferation  and  decreases  in  cytokine  expression.  It  could  be  that  

cytokine  expression  is  more  sensitive  to  the  effects  of  MeHg+  than  is  lymphocyte  proliferation  

and  is  a  better  indicator  of  the  immunotoxic  effects  induced  by  MeHg+.  Clearly,  more  data  are  

needed  from  in  vitro  and/or  in  vivo  experiments,  to  translate  what  magnitude  change  (measure  
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372 in  increase  or  decrease)  in  an  immune  function(s)  would  result  in  an  adverse  health  outcome  

in  exposed  marine  mammals.  Further,  compartmentalization  of  MeHg+  in  whole  blood  may 

affect  lymphocyte  exposure  levels  in  vivo.  An  additional  study  is  underway  to  measure  the  

same  cytokines  as  above  in  SSL  pup  serum  and  assess  their  relationships  with  measured  

whole  blood  MeHg+  concentrations.  Together,  these  data  will  help  direct  efforts  to  accurately 

assess  the  impact  of  MeHg+  on  the  immune  health  of  SSL  pups.  
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526 Figure  Legend  

 

Figure  1.  Representative  scatterplot  (left)  and  density  plot  (right)  of  SSL  peripheral  blood  

leukocytes  after  cryopreservation.  Leukocyte  sub-populations  were  easily  distinguished  based  

on  forward  scatter  (relative  size;  x-axis)  and  side  scatter  (relative  complexity;  y-axis).  

Neutrophils  (R1)  are  large  and  complex;  lymphocytes  are  smaller  and  less  complex  (R3),  while  

monocytes  (R2)  are  slightly  larger  than  lymphocytes  and  less  complex  than  neutrophils.   

Lymphocytes  and  monocytes  make  up  the  peripheral  blood  mononuclear  cell  (PBMC)  

population.    

 

Figure  2.  Effects  of  increasing  concentrations  of  monomethyl  mercury  (MeHg+)  (unexposed  

control,  0.001,  0.01,  and  0.1  µg/ml)  on  mitogen-induced  lymphocyte  proliferation  upon  in  vitro  

exposure.   Data  are  presented  as  a  percent  of  the  unexposed  control   and  percent  change  

values  are  shown  below  the  bar  graph.  *,  p<0.05  compared  to  unexposed  control  for  each  

mitogen.  Concanavalin  A  (ConA,  1  µg/ml)  is  a  T  cell  mitogen  and  lipopolysaccharide  (LPS,  5.0  

µg/ml)  is  a  B  cell  mitogen.  

 

Figure  3.  Effects  of  increasing  concentrations  of  monomethyl  mercury  (MeHg+)  (unexposed  

control,  0.001,  0.01,  and  0.1  µg/ml)  on  cytokine  concentrations  following  in  vitro  exposure  of  

peripheral  blood  mononuclear  cells  (PBMC)  to  mitogens.  No  mitogen  (NM),  Concanavalin  A  

(ConA,  1  µg/ml),  and  lipopolysaccharide  (LPS,  5.0  µg/ml).  *,  p<0.05  compared  to  unexposed  

control  for  each  mitogen.  
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Table 1. Minimum detection concentrations for 13 cytokines 

Cytokine Minimum detection limit (pg/ml) 
IFNγ 13.6 
IL-10 8.5 
IL-6 3.7 
TNFα 6.1 
IP-10 3.2 
IL-2 3.5 
IL-7 7.5 
IL-8 21.7 
IL-15 9.0 
IL-18 5.8 
KC-like 5.3 
MCP-1 21.0 
GM-CSF 9.2 
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